Sobre si no soy suficientemente ecologista para apreciar este empeño del gobierno de que reduzcamos nuestro consumo eléctrico, al menos en horario de consumo punta, he de recalcar un par de puntos:
- La generación de electricidad no es sustancialmente más verde de noche que de día (yo también pensaba que sí lo sería), si es que no sucede al revés. Echad un vistazo al mix de producción en la página de la Red Eléctrica de España. En los picos es cuando suele entrar la energía hidráulica.
- La calefacción realmente ecológica es la bomba de calor, que sufre un recargo en su consumo (además de su total falta de promoción en el caso de la aire/aire o aire/agua), mientras el antiecológico (en comparación) consumo directo de gas natural no tiene absolutamente ningún recargo por exceso de consumo, más bien al revés, cuanto más consumo tarifas más baratas, justo a la inversa que con la electricidad doméstica.
Datos y suposiciones
En el análisis sobre la eficiencia de las calefacciones ya introduje una primera aproximación al impacto de la Tarifa de Discriminación Horaria (Residencial) en la factura de las calefacciones eléctricas, tanto directas (radiadores/emisores eléctricos o acumuladores) como bombas de calor. Simplemente en ese artículo aplicaba una distribución uniforme del consumo de calefacción independiente de la franja horaria, mientras que en la realidad tendremos menores temperaturas de noche que de día con un consiguiente mayor proporción del gasto durante la noche que durante el día. Pues bien, en el presente artículo, presupongo unas condiciones de temperatura externa de 7°C durante el día (horario punta de la TDH, es decir, 10 horas al día) y -7°C durante la noche y mañana (horario valle de la TDH, es decir, las otras 14 horas al día), con lo cual, para una temperatura constante interior de 21°C, resulta en un consumo de potencia calorífica doble en una hora nocturna (diferencia de 21°C-(-7°C)=28°C) que en una hora diurna (diferencia de 21°C-7°C=14°C), al considerar las pérdidas de calor proporcionales a la diferencia de temperatura. En la práctica, si considerasemos la reducción de las pérdidas de calor del acristalamiento (ventanas y puertas de cristal) al bajar las persianas al caer la noche, entonces el consumo nocturno sería algo menor.
Además, he considerado mayor potencia contratada para aquellos sistemas con mayor necesidad de consumo eléctrico, fijando arbitrariamente a 4'8kW en el caso de la bomba de calor de eficiencia 350% (en principio tierra/agua, es decir, geotérmica); el resto, en función de cuánto consuman de potencia eléctrica nocturna a mayores respecto a la geotérmica, así aumentarán su potencia contratada (y ya todos sabemos, salvo el cachondo del señor ministro, que la potencia irá en función de lo que le permiten los incrementos de 5A de intensidad eléctrica). La elección, aunque arbitrartia, sigue cierta lógica: simplemente porque así la de eficiencia del 250% (en principio aire/agua o aire/aire) tiene ya una potencia contratada de 5'75kW, que se corresponde con la instalación en nuestra casa donde tenemos doble dual-split aire/aire, es decir, 2 unidades externas y 4 internas (consolas), con un consumo máximo eléctrico conjunto de unos 2'4kW.
En éste último tipo de bombas de calor (aire/agua o aire/aire), de eficiencia media del 250%, he tenido en cuenta la variación de la eficiencia con la temperatura, considerando una caída de prestaciones a -7°C respecto a las de 7°C de un tercio, más un incremento de un pesimista 20% en la potencia consumida por culpa de desescarches, tal y como ya hice en la primera entrada acerca de prejuicios sobre la bomba de calor. Con ello, y habiendo fijado la eficiencia media, obtengo los valores a 7°C, resultando un COP de 3'97, y a -7°C, resultando un COP de 2'2. El primero, 3'97 a 7°C, será pesimista para, al menos, una bomba de calor aire/aire Inverter de COP en situaciones nominales de al menos 3'97, pues estaría trabajando a una potencia entregada bastante baja (550W de consumo eléctrico y éste por el COP de calor insuflado) donde estas bombas tienen rendimientos superiores al nominal (al menos las mías). El segundo, 2'2 a -7°C, como ya comenté también es pesimista en una bomba de calor moderna con desescarche inteligente.
De darse el caso de que en realidad tengamos una bomba de calor aire/aire o aire/agua de misma potencia eléctrica que para el caso geotérmico (1'25kW), entonces con la bajada de temperatura externa no llegaría para mantener la temperatura de la casa. Este caso lo he contemplado en la última columna: un sistema de bomba de calor apoyado por resistencia eléctrica (de unos 1'6kW), que dará el calor complementario necesario en dicha situación (de noche-mañana). Ello hará, obviamente, aumentar tanto el consumo, como la potencia a contratar (en las condiciones del estudio). La resistencia, bien estará incluida en la bomba aire/agua, bien será un simple radiador/emisor /termoventilador eléctrico para la bomba aire/aire.
Tabla comparativa de consumo ante TDH
Resultado recortado, sin algunas filas y columnas auxiliares.
Aquí la hoja de cálculo de OpenOffice (aquí para la mula; como es el primero, si tenéis problemas avisad), por si queréis jugar con algún número, o simplemente conseguir ver mejor esta pedazo tabla.
[Añado versión al 30/IV/2010, con tarifas actualizadas (ha desaparecido, por ejemplo, el exceso de consumo y la tarifa regulada como tal para trifásica, o sea, potencia superior a unos 10kW) para la mula: hoja de cálculo de OpenOffice (enlace por si no tenéis eMule o similar) y exportanción en archivo PDF (ídem). También he añadido a partir de qué porcentaje de consumo en horario de noche-mañana compensa pasarse a la TDH: grosso modo con un poco más de la cuarta parte del consumo eléctrico.]
Comentario a los resultados
Si bien las condiciones de funcionamiento son realmente adversas (10 horas al día a 7°C y otras 14 a -7°C, durante 6 meses), un sistema de bomba de calor aire/aire o aire/agua autónomo (con la potencia suficiente para no requerir apoyo eléctrico en ningún momento) supone apenas un 25% de incremento de gasto de utilización que en el caso de bomba de calor geotérmica (con condiciones de operación pesimistas para todos los casos). En este ejemplo, se podría conseguir la potencia autónoma con un simple par de bombas de calor aire/aire split Inverter DC de potencia pequeña (consumo eléctrico de 1kW), pudiendo salir con instalación cada una por unos 1.200€ (lo que le salió a mi cuñado el mes pasado, incluyendo ya el IVA). Sin volver a ponerla otra vez aquí, en la figura de comparación de todos los tipos de calefacción podéis observar como ya la opción de gas natural con caldera de condensación y la de caldera de biomasa quedan peor en consumo, aunque incluyamos todos los gastos fijos de electricidad en la cuenta de calefacción. Es más, ante las condiciones particulares de funcionamiento en el presente estudio, sorprendentemente el consumo de la calefacción eléctrica directa normal (sin acumuladores) con TDH es totalmente comparable con la calefacción de gasóleo con caldera a baja temperatura.
De ya contar con otro sistema de calefacción, podemos observar en la última columna cómo no es impensable utilizar la bomba de calor simplemente como elemento de ahorro en una instalación existente, quizá de radiadores/emisores eléctricos, a la escandinavo-irlandesa, colocando simplemente la consola interna en una zona central de la casa, y utilizando eventuales radiadores/emisores eléctricos (de tener que comprarlos, los más baratos que cumplan unos mínimos), bien de apoyo en caso de necesidad (el rendimiento de la bomba ante una bajada de temperatura ya no sea suficiente), bien para subir algún gradillo en alguna habitación en particular (con el termostato puesto quizá en la bomba a un grado más que en los radiadores).
Si las condiciones térmicas del invierno en la zona en la que vivimos, son bastante más suaves de las expuestas, entonces que nadie se extrañe si el rendimiento de la bomba de calor aire/agua o aire/aire resulte totalmente comparable al de una instalación geotérmica.